1
Xpressing tumors, patients did not show any difference in survival when stratified by resection status whereas patients with high CNKSR1 expression levels who underwent resection had significantly improved outcome compared to non-resected patients in this group. Combination of CNKSR1 expression levels with current clinicopathological prognostic features might improve risk stratification and treatm
1
Nostic marker using multivariate analysis, with patients in the low CNKSR1 expression group having a median OS that is nearly half that of patients with high CNKSR1 expression. In addition, we attempted to determine whether CNKSR1 status might affect the survival difference associated with resection in pancreatic cancer patients. If validated in a larger patient sample, such information might be u
1
Y intensity of p-ERK immunostaining. Figure 8C shows nuclear p-ERK expression levels (0, 1+, 2+, 3+)) by CNKSR1 cellular distribution (cytoplasmic CNKSR1 expression only vs cytoplasmic and nuclear) in pancreas cancer specimens of the SEER Pancreatic Cancer TMA (Mann Whitney U test; p = 0.017). To test whether expression levels of the two proteins are correlated as well, including if a possible neg
1
Nostic marker using multivariate analysis, with patients in the low CNKSR1 expression group having a median OS that is nearly half that of patients with high CNKSR1 expression. In addition, we attempted to determine whether CNKSR1 status might affect the survival difference associated with resection in pancreatic cancer patients. If validated in a larger patient sample, such information might be u
1
Tin S, Mathieu V, Kiss R, Lefranc F: Galectins and gliomas. Brain Pathol 2010, 20:17?7. Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Kaczmarek E, Ponce F, Coons SW, Giese A, Seiler RW, Berens ME: Death-associated protein 3 (Dap3) is overexpressed in invasive glioblastoma cells in vivo and in glioma cell lines with induced motility phenotype in vitro. Clin Cancer Res 2001, 7:2480?489. Mariani
1
Cal significance.Paraffin sections of our patient-derived glioblastoma xenografts (15 of 22 lines) were stained for galectin-1 expression. Around half of the xenografts tested showed preferential staining at the tumor-brain interface (Figure 3). A few tumors stained in their entirety, and another subset lacked significant staining. The 2 to 4 fold change in galectin-1 mRNA expression at the tumor
1
By the ample amount of normal mouse brain tissue available for dissection. In spite of species differences, cross-hybridization of mouse genetic material to human probes did prove to be a common occurrence. These data made it possible to control, rather stringently, for the potential contamination of tumor edge samples with mouse brain. Of course, there could still be possible contamination ?react
1
Ed by the current ones, highlight a major role for galectin-1 in GBM invasiveness. The characteristic malignant phenotype of glioblastoma extends beyond aggressive invasion. This tumor develops resistance to chemo- and radio-therapy, it promotes neoangiogenesis, and it seems to benefit from immune privilege. Interestingly, galectin-1 may play a role in promoting each of these phenotypes. While gal